SpaceX completes another successful short test flight of its Starship spacecraft prototype

SpaceX has done it again — a second “hop” flight in less than a month for its Starship prototype. This was a 150 meter (just under 500 foot) test flight from its Boca Chica, Texas development site. The prototype used in this instance was SN6, a more recent model than the SN5 test article that SpaceX used to complete a similar test at the beginning of August.

The hop flight is a key part of its testing program for Starship, and its Raptor engine. These prototypes are equipped with only one such engine, but the final production version will have six, including three designed to fly in Earth’s atmosphere, and three to be used while the vehicle is in space.

SpaceX accomplishing two of these flights with a controlled, upright landing in rapid succession is a very good sign for the spacecraft’s development program, since there have been a number of previous prototypes which never made it to this point. Earlier versions encountered pressurization failures under load when simulating what the conditions would be with fuel on board.

These short hops help SpaceX gather data bout Raptor performance, as well as the performance of a full-sized prototype Starship (though without elements including the nosecone and eventual landing legs). All of this will inform later tests, including a much higher sub-orbital atmospheric flight intended to go around as high as commercial airplanes fly, and eventually, the first orbital Starship launch, which is currently likely to take place next year at the earliest.

SpaceX is pursuing a rapid iteration development plan for Starship, creating multiple generations of prototype at once at its Boca Chica site, with the aim of testing and improving the design quickly, while also learning from failures. The goal had been to fly Starship’s first operational missions sometime next year, but it will be incredibly impressive if the company manages that, considering where they are in the rocket’s development cycle.